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Abstract

In physics, there is the prevailing intuition that we are part of a unique external world, and that the goal
of physics is to understand and describe this world. This assumption of the fundamentality of objective
reality is often seen as a major prerequisite of any kind of scientific reasoning, delineating science from
pseudoscience, and explaining why successful empirical science is possible in the first place. However, here I
argue that we should consider relaxing this assumption in a specific way in some contexts. Namely, there is
a collection of open questions in and around physics that can arguably be addressed in a substantially more
consistent and rigorous way if we consider the possibility that the first-person perspective is ultimately
more fundamental than our usual notion of external world. These are questions like which probabilities
should an observer assign to future experiences if she is told that she will be simulated on a computer? How
should we think of cosmology’s Boltzmann brain problem or assign probabilities to properties of ‘possible
worlds’? What can we learn from the fact that measurements in quantum theory seem to do more than just
reveal preexisting properties? Why are there simple computable laws of physics in the first place? This
note summarizes a longer companion paper which constructs a mathematically rigorous theory along
those lines, suggesting a simple and unified framework (rooted in algorithmic information theory) to
address questions like those above. It is not meant as a ‘theory of everything’ (in fact, it predicts its own
limitations), but it shows how a notion of objective external world, looking very much like our own, can
provably emerge from a starting point in which the first-person perspective is primary, without apriori
assumptions on the existence of ‘laws’ or a ‘physical world’. While the ideas here are perfectly compatible
with physics as we know it, they imply some quite surprising predictions and suggest that we may want
to substantially revise the way we think about some foundational questions.

Contents

1 Introduction

2 An unfamiliar but simple theory

2.1
2.2
2.3
2.4
2.5
2.6
2.7

The postulates: observers, probability, and Solomonoff induction . . . . . . .. .. ... ...
Three roads to the same theory . . . . . . . . . . . . . ..
So how do we get physics from this? . . . . . . . .. .. oo oo
Interlude: an open question . . . . . . . . ...

3 Conclusions

Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna



1 Introduction

“The hypothesis that there is an external world,

not dependent on human minds, made of something,

is so obviously useful and so strongly confirmed

by experience down through the ages that we can say
without exaggeration that it is better confirmed

than any other empirical hypothesis. So useful is the posit
that it is almost impossible for anyone except a

madman or professional metaphysician to comprehend

a reason for doubting it.” (M. Gardner [2])

This paper takes the perspective of the madman: only if we doubt the obvious will we be able to approach
some longstanding open problems in physics and beyond, including the question why we see something like
an external world at all.

This is a summary of a longer companion paper [I] which contains all the mathematical proofs referred to below
and a much more detailed argumentation.

2 An unfamiliar but simple theory

2.1 The postulates: observers, probability, and Solomonoff induction

The starting point of this proposal is the idea that the problems mentioned in the abstract motivate a
departure from some aspects of the traditional way that we tend to think about the world. Traditionally,
a physical theory presupposes the existence of an objective material external world that evolves according
to certain physical laws. Our theories about these laws are tested by calculating their predictions and by
comparing them with the observations that we actually make. Since the discovery of quantum mechanics,
we think that these predictions are probabilistic at best, and in principle all of the form

P (next observations | previous observations). (1)

For example, in a laboratory experiment, “previous observations” includes all our knowledge about the
experimental setup and data we have acquired earlier; the “next observations” correspond to possible out-
comes of the experiment. Crucially, we traditionally view the probabilities in as being derived from (or
secondary to) an objective external worldﬂ either they arise because we are agents inside that objective
universe who have only limited knowledge, or because the postulates of quantum theory claim directly that
we should assign these probabilities as a consequence of the world’s quantum stateﬂ

It turns out that several important conceptual problems in physics and beyond can be phrased in terms
of the probabilities , and challenge the traditional view described above:

e Quantum mechanics. According to Bell’s Theorem, naive versions of realism (roughly, the idea that
measurement outcomes are always predetermined before the measurement is performed) are incon-
sistent with other important principles of physics (like locality). This has led to the slogan that
“unperformed experiments have no results” [3], and to decades of discussions about how to inter-
pret the counterintuitive formalism of quantum mechanics [4]. Substantial effort has been invested in
tackling the question “where the probabilities in come from”, without final consensus.

!Unless the probabilities are zero or one, in which case we often think of the corresponding propositions as reflecting actual
properties of the world.

2Some readers will have strong views on the interpretation of probability (and/or quantum theory), but I suggest remaining
agnostic on this question for the time being. How “probability” is supposed to be understood in this paper will become clear
from the context and/or will have different possible interpretations. More details on this are given in [I].



e (Cosmology. If we are observers in a really “big” universe (for example, a world undergoing eternal
inflation), then the question arises regarding which probabilities of the form we should actually
assign to our own future observations. There are deep and surprising problems that arise in this
context, for example the infamous Boltzmann brain problem [5l [6] (claiming that we should assign
high probability to being only a short-lived thermal fluctuation in some cosmological models [7]), or,
more broadly speaking, the measure problem of cosmology [8].

e Artificial Intelligence / Philosophy of Mind [9]. Even though it sounds like science fiction at the time of
writing, current scientific progress suggests that we will soon live in a world where novel technologies
present us with severe philosophical dilemmas. As one extreme and illustrative example, think of
simulating the brain of a terminally ill person (after her death) on a computer [I0]. Would this be a
valuable endeavor? Would the person “feel like being” in the computer simulation, or would it have
no effect on her first-person perspective whatsoever? Questions of this form can (at least in principle)
be recast in terms of the conditional probabilities : what is the probability that the person is going
to observe the simulated state of mind, given what she has observed in the past?

In this paper and in [I], I suggest to address aspects of all these questions in a unified way, by taking a
radically unconventional perspective and by asking: what if the probabilities in are actually fundamental,
and physics as we know it is an emergent phenomenon?

As implausible as this may at first sound, there is a clear-cut technical starting point, namely algorithmic
information theory [I1], [12] and “Solomonoff induction” (SI). In a nutshell, SI suggests that any observer
who has made previous observations x should assign conditional algorithmic probability P(y|z) to future
observations y. The quantity that we call P here is defined in algorithmic information theory as a “universal
apriori probability”. It is a normalized version of a “universal enumerable semimeasure”, corresponding to
the probability that a randomly chosen (say, by a fair coin toss) computer program for a universal monotone
Turing machine will output y after it has output z. Algorithmic probability is a mathematically natural
quantity that can be defined in many equivalent ways and that has a multitude of applications in computer
science; see [L1] for the detailed definition and [I, Section 5] for an accessible overview.

This prescription yields a method of inference that is guaranteed to yield correct answers in the following
sense: if the observations arise from a stochastic process which is computable (i.e. that it has a finite effective
description for a probabilistic Turing machine), then the probabilities assigned by SI are guaranteed to
converge to the distribution that is given by the process. For example, suppose that an observer sees one
bit (zero or one) after the other, and she does not know that these bits are generated by a deterministic
(stochastic) process that always outputs “17. After having seen n ones, SI suggests to assign the probability
P(0]11...1) to seeing a zero next, and it turns out that this goes to zero (roughly like 1/n) as it should [12].

But theg, it follows in particular that SI can be used for successful prediction of observations in our physical
world, since the laws of physics as we know them are computable (as stated by a physical version of the
Church-Turing thesisﬂ). This is the reason why SI (or rather practically implementable versions of it) is
considered applicable in artificial intelligence. In a nutshell, we have the following

Observation: Whenever our physical theories give us a concrete value of Ppyys(y|x), this prediction
will agree with Solomonoff induction’s P(y|z) — at least asymptotically, after many observations.

3See [1, Section 2] for more details and references, and [I3] for a definition of the physical Church-Turing thesis. In a
nutshell, the version that I am using here claims that there is an algorithm that yields a description of the probabilities of
outcomes, given the description of any experiment. It does not mean that the actual outcomes can be predicted or computed.
For example, an infinitely repeated fair coin toss is computable according to this definition (since it is a stochastic process with
a finite description), but the actual outcome sequence will almost surely not be computable. The laws of physics (at least in
the approximate form that we know them) seem to be computable in this sense.



In other words, we can in principle make correct probabilistic predictions by applying SI alone, without
any direct reference to physical theories. This suggests two possible routes of exploration.

First, it suggests that we can use SI as a pragmatic “rule of thumb” whenever physics itself does not
give us any obvious probabilistic predictions. For example, in the cases of cosmology or brain emulation
sketched above, it is not clear how our physical theories would allow us to assign conditional probabilities
of the form ; in fact, some philosophers would argue that physics is in principle unable to do so in some
cases. In these cases, we can instead use P directly for prediction. Ignoring the practical difficulties of doing
so, this yields a pragmatic method of inference, motivated by the observation above and also by further
considerations like Ockham’s razor (since P(x) is larger for simpler x, i.e. for those that have a shorter
description). This will give us predictions in realms where physics in itself does not, and is in principle
guaranteed to be compatible with physics in regimes where SI and physics are both applicable.

Second, it suggests a much more ambitious idea: what if there is only a single fundamental law, namely
that algorithmic probability determines future observations? Could it be that the physical laws and regular-
ities that we observe (including the appearance of an objective external world) are simply consequences of
(Solomonoff) induction? If so, this would imply a worldview that is quite different from the standard one,
more similar to Wheeler’s idea of “Law Without Law” [14].

Before examining the conceptual basis of this in more detail, let us turn to the technical question of how

one can obtain a concrete theory from this idea. In this summary paper, I will drop most mathematical
details for reasons of brevity; all these details and much more thorough discussions can be found in [IJ.

Figure 1: Schematic illustration of an observer graph A, which is a computable directed rooted graph on the finite binary
strings (here the root is A = 01). Any path through the graph (starting at its root) will be called an “A-history”. For any
vertex x, we denote by A(x) the set of all vertices y such that there is an arrow from z to y. For example, in this figure,
we have A(01) = {011,001}. An A-measure ;i(e; A) is a probability measure on the A-histories, i.e. u(A; A) = 1 for the root
A, and ZyEA(mn) w(@, ..., Tn,y; A) = p(x1,...,20; A). In particular, P(e; A) as defined below is an A-measure. Standard

algorithmic information theory [I1] is mostly restricted to the special case of the tree graph where A is the empty string €, and
A(x) = {20, z1}.

We start by defining the notion of an observer. Note that the purpose of this definition is neither to
capture what we colloquially mean by an observer, nor to decide once and for all how we should think
of an observer, but rather to abstract the most important features of it to allow for a mathematically
sound theory. We will do this by introducing the notion of an “observer graph”, which is a (computable,
rooted) directed graph over the finite binary strings, {0,1}* = {,0,1,00,01,10,...}. This captures the
following idea. Any observer (for concreteness, think of a human being or animal for now) will, at some
moment, contain information that encodes everything that she sees, knows and remembers at that moment,
described by some (usually very long) binary string « € {0, 1}*. Naively, think of encoding the full content
of the brain into a long string of zeroes and ones. In the following, I will interchangeably use the words
“experience”, “observation” and “state of the observer” for such a string, emphasizing different aspects of
the interpretation, but without commitment to any details of the interpretation (in particular, no direct
relation to “consciousness” etc. is claimed in using these words). For example, this string could describe
the experience of a bat, flying inside a cave towards a turning point where it cannot see what is coming



next. Then, one moment later, there will be another string y € {0,1}* that describes the observer’s next
experience. In general, there are many possible next strings y; for example, the bat might see that the cave
just goes on, much further, in the same way as before; or she may be very surprised to find the cave’s end,
since part of it has collapsed since she had been there the last time.

We will formalize this by having the string = as a vertex of a graph, and (at least) two arrows pointing
away from z, to the two possible next strings y. As a result, we get a graph as in Figure [1] (just think of
the strings as being typically much longer). Every vertex (binary string) describes a conceivable momentary
experience of the observer, while the outgoing arrows point to the next possible experiences. Note that
“possibility” is here not defined with reference to any laws of physics (there are none at this point), but
should rather be understood as “subjectively legitimate successor experience”. For example, in the case
of the bat, another possible next experience y (following x as described above) would be to see, suddenly
and surprisingly, a huge massive rock made of gold materialize in the cave where she is flying. This would
correspond to some arrow in the observer graph, even if our idea of the bat as embedded in a physical
world would make us expect that this experience will be physically disallowed. On the other hand, there
would not be an arrow to a string that describes the experience of, say, Donald Trump on a state visit in
Austria, looking up to the mountains (and having all his usual memories). This would not correspond to a
subjectively legitimate successor experience of the poor batﬁ

Of course, the handwaving argumentation above raises all kinds of questions, like: how should we encode
some observer’s state into a binary string? Or, which transitions (arrows) are concretely allowed, and which
are not? The point is, however, that we do not need to answer these questions in order to write down
the postulates of our theory. And then, once the theory is in place, we will actually see how to answer
those questions. For example, regarding the former question, it will turn out that the choice of encoding
is irrelevant, since predictions of the theory will be “covariant” with respect to the choice of encoding, in a
somewhat similar way as equations of General Relativity are with respect to a choice of coordinate system.
Moreover, we never really have to perform or compute an actual encoding, since most predictions will follow
from the existence of such an encoding and not from its exact form. Regarding the latter question, it will turn
out that we can (and should) actually allow all transitions, and have the complete graph as our observer
graph. This is because algorithmic probability by itself will make sure that “subjectively non-legitimate
successor experiences” (like the bat becoming Trump) are extremely unlikely.

Postulates of the theory (see also Figure :

1. Every observer is described by an observer graph A as defined above; the sequence of observations
that the observer successively experiences corresponds to the list of binary strings in an A-history.

Remark. At the end of [I], we amend this postulate by demanding that A has to be the complete
graph on all stringsﬂ we keep the more general formulation initially for convenience.

2. After having experienced a finite A-history x = (z1,..., ), the observer will subsequently expe-
rience one of the strings y € A(x,) at random. The probability of every y € A(x,,) is given by the
conditional algorithmicﬂ probability P(y|x; A).

“This concept is similar to Parfit’s “Relation R” [I5]. Nevertheless, the exact definition of this relation turns out to be
irrelevant for the theory presented here; in fact, we will soon see that we can drop it altogether.

5This means that there are no apriori restrictions on the possible transitions whatsoever, which simplifies the theory. However,
for measure-theoretic reasons, the graph will still have to be rooted, i.e. we have to specify the initial state in which the observer
starts. See also the discussion in Subsection

Conditional algorithmic probability P(y|x) is usually only defined if y is a bit (zero or one), and x is a single string of bits.
Thus, we have to extend the definition to the case that y is a bit string and x is a sequence of strings as above (and this has
been done in [I]). Technically, it is a generalization of the universal enumerable semimeasures on continuous sample spaces
of [I1], relying on a straightforward generalization of the monotone Turing machine that I call a “graph machine”.



This is it — there are no further postulates or assumptions. All other aspects of physics that we, as
human observers, experience and cherish (including the appearance of an external world, and intersubjective
agreement between different observers) are not postulated, but rather are expected to emerge as provable
consequences. In this sense, this is a theory which is arguably as simple as possible: it only postulates that
we make a sequence of observations (which is the only thing we definitely know), and it makes a statement
about the propensity of the possible observations. These are the minimal ingredients of any physical theory.

Before we discuss how well-known aspects of physics follow from these postulates, we have to briefly
discuss one problem that readers with background in theoretical computer science will immediately acknowl-
edge. By definition, P(y|x; A) = P(x,y; A)/P(x; A), and P(x; A) = Py(x; A) is defined as the probability
that a universal computer U outputs A-history x if it is given a random program as input, together with
a description of A. But there are infinitely many different universal computers U, and so which computer
U should we choose as our reference to define the probabilities? This question has been recognized as an
important problem in artificial intelligence [16] and does not have an easy solution [I7]. However, it can be
shown with some effort [Il, Sec. 6.1] that the theory that follows from the postulates above is invariant with
respect to the choice of U (since the resulting transition probabilities are “covariant” [I, Lemma 5.15] with
respect to this choice), as long as U is chosen from a specific infinite subset of universal computers.

2.2 Three roads to the same theory

So far, we have motivated our two postulates by the observation (framed on page 2) that Solomonoff
induction’s P(y|x) will give predictions which are asymptotically identical to those of our physical theories,
suggesting that we can in principle (but not so easily in practice, of course) replace our laws of physics by
instead postulating the correctness of SI. But we can also use this observation to motivate the postulates
by a kind of structural argument [I§]: if there is one canonical mathematical structure that gives us
a notion of probability, or propensity, then we do not need to introduce an additional structure (another
theory of physics) to explain these probabilities, since this would amount to logical overdetermination in
some sense. This kind of thinking is ubiquitous in theoretical physics, as explained in [Il, Section 7]. Here it
suggests that we interpret the “physical world” as a “propensity structure” (i.e. something that determines
which observations are more likely than others), and identifies algorithmic probability as a canonically
distinguished choice of such a structure.

It is encouraging to see that there are several other routes of argumentation that lead to essentially the
same postulates. One of them is the idea to explore what would happen in a world “without any laws
of nature”ﬂ As T argue in [I], Section 7], one approach to formalize this intuition is to demand that “there
should be no preference of any given choice of laws of nature over any other possible choice”, and chances
of what happens (or rather what we observe) should be determined simply by the structure of mathematics
itself (since it represents the collection of all logically consistent possibilities). The attempt to formalize the
notion of a “completely random choice of mathematical structure” along these lines will arguably again lead
to (some version of) algorithmic probability.

"Note that the idea of “absence of physical laws” has been discussed in several contexts before, for example in Wheeler’s
work and in QBism [19, 20, 4] (formerly known as Quantum Bayesianism). While the ideas here have a lot of overlap with
the general worldview of QBism, they differ in particular in one point of view: namely, they emphasize that it is so damn
difficult to explicate in detail what it means to claim that the world is “lawless”, or that “the universe as a whole is still under
construction” [2I]. Historical “paradoxes” of probability like e.g. the Bertrand paradox should be a warning for us and an
incentive to be precise when we make these statements. QBists can get around the general demand for precision in this context
by simply saying that the empirical representatives of our theories (quantum states) have no “ontic hold” on the world [22],
thus avoiding the task to formalize what they mean by saying that the world “kicks back” in an unpredictable way. My claim
is that we currently know of only one way to formalize this idea, namely in terms of probability theory which is not interpreted
in a subjective Bayesian way: by saying that some things are in fact more likely than others. Within this framework, we can
proceed in a mathematical/structural way by interpreting “lawlessness” as “absence of a distinguished structure”, which leads
to large parts of the ideas presented here. But I invite everyone to come up with a better idea to formalize this intuition.



A third route is comparable with some ideas that cosmologists have cooked up, see e.g. Aguirre and
Tegmark [23]. Let us for a moment imagine the multitude of all conceivable, logically consistent worlds or
“universes” (note that the theory as constructed here does not claim that we have to think about the world
like this). According to the usual picture of observers (supplemented for the moment by this multiverse
picture), we would intuitively say that every observer is part of some universe. However, to every observer,
there are infinitely many copies, subjectively indistinguishable, embedded in infinitely many (sometimes
only slightly) different universes (or sometimes even several copies in one universe as in [23]). Suppose that
there is no apriori notion of one universe being “real” and all others being “not real”. Then, if an observer
makes new observations that give her more indexical information, i.e. tell her that she cannot be in universe
A, but can be in universe B (while both were consistent with her observations the moment before), then
this should manifest itself for her as the outcome of a random experiment. In other words, she should see a
statistical mixture of all “universes” consistent with her previous observations. It turns out [I}
Section 7] that algorithmic probability can indeed be interpreted as a statistical mixture of all computable
deterministic WOI]dSH This gives fans of a multiverse-like worldview an independent reason to adopt the
two postulates above. However, these postulates do not claim the existence of a multitude of worlds, and
the multiverse picture is just one possible interpretation among many.

2.3 So how do we get physics from this?

What would observers see if the two postulates were true, and no other assumptions (like the existence of
an external world etc.) were made?

According to Postulate 2, an observer’s experiences are determined by algorithmic probability P. Even
though P is a mathematically “natural” quantity that appears in many different contexts and can be
defined in many different ways, it is in some other sense quite “complex” and irregular; for example, it
is noncomputable. At first sight, this should imply that observers make very irregular and unpredictable
observations. A second thought, however, paints a quite different picture: after all, algorithmic probability P
favors compressibility by giving higher weight to histories x = (z1,...,2,) that have a shorter description.
A first result [I, Theorem 8.6] shows that this has an interesting consequence described in the following
theorem. It uses the notion of a “computable test”, which is a computable function f that maps A-histories
x = (x1,...,x,) to single bits (0 or 1), interpreted as the result of a “yes-no-question”. For every such test,
we demand in addition that it is “open”, i.e. that it can yield both“yes” and “no” for future observations
— formally, for every A-history x = (z1,...,,), we demand that there are x,41,2,_ ; € A(z,) such that
f(x1, ... T, @py1) =0 and f(z1,...,2n,2;,,1) = 1. Then we get the following.

Theorem 2.1 (Principle of persistent regularities). Let A be a dead-end free observer graph, and f an open
computable test. Suppose that f has given the answer “yes” to all observations in the past; then it will give
the answer “yes” with high probability in the future. In more detail, for b € {0,1} define

p(OI1") =P (f(x{™) =b| f(xi) =1, f(x{) =1,.... f(x}) = 1),

where X" := (z1,%2,...,%m). Then p(1]1") > 1 — % for all but finitely many n. Moreover, the probability
that f(x1') =1 for all n is non-zero.

What this says is that regularities tend to stabilize themselves: if a computable regularity has been
present (maybe by pure chance) for long enough, then it will tend to persist in the future. In some sense,
observers will “catch lawlike regularities” like they would catch a cold — not as a consequence of some
external “laws of nature”, but simply due to the properties of algorithmic probability.

With this principle in place, let us discuss how the Boltzmann brain problem is automatically resolved.
Suppose our observer (let’s call her Bambi) is currently in a state in which she remembers having lived a

8This is not inconsistent with quantum theory as we will discuss in Subsection
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rich life full of experiences in a standard, low-entropic planet-like environment (and she has been like this
in the past). Within the standard cosmological picture of our world, there is a possibility that Bambi, or
rather her brain with all her memories, has just now appeared as a highly improbable thermal fluctuation,
surrounded by a soup of thermal gas. In the next moment, this could mean that she makes a very strange and
unexpected experience (say, heavy pain due to gas hitting her synapses). Let us call this a “BB-experience”.

How probable is a BB-experience? If our universe is very large (say, due to eternal inflation), then naive
counting may in some cosmological models suggest that a BB-experience is far more likely than our actual
standard experience [5], [6]. However, according to our theory, Bambi’s subjective experience is determined
by algorithmic probability P as in Postulate 2 (and not by counting frequencies of events in some world),
leading to the principle of persistent regularities above. But this principle says that if the description of
having evolved in a standard way on a planet worked very well in the past, it will probably persist in the
future. This is because we can always cook up an open computable test that asks whether Bambi’s experience
is typical for a planet-like environment or noﬂ Thus, a BB-experience is unlikely. In a nutshell, the reason
is that a BB-experience has much higher conditional Kolmogorov complexity (given past experiences) than
a standard experience.

The principle above is only referring to single computable tests. But what if we have several different
computable tests, do the answers all fit together into some coherent overall lawlike behavior? The next
theorem shows that there is indeed a tendency for this to happen:

Theorem 2.2. Let A be a dead-end free observer graph, and p a computable A-measure. Then
P {P(y\xl, s A) Syl ,mn;A)} > 9~ KwA),

that is, with probability at least 2~ K#A) (which is large if and only if u is simple), the actual transition
probability P will in the long run convergﬂ to the computable measure L.

That is, asymptotically (i.e. after n observations, where n is large), observers will see that their proba-
bilities of future observations are very well described by another probability measure p. While P itself is
noncomputable, p instead will be computable and thus be much better suited for actual prediction. More-
over, with high probability, the Kolmogorov complexity K (u; A) of the measure p will be small. This means
that p will probably be simple in a very specific sense:

Simplicity of u: there exists a short computer program (of length K(u; A)) which makes the universal
reference machine U do the following. If the input bits are chosen uniformly at random (as if by a fair coin
toss), the machine produces a random output history distributed according to u. This means that p, as a
stochastic process, has a short description; but it does not mean that the actual sequence of outputs is simple
in the sense of having a short description.

For example, let A be the observer graph that has just two vertices, 0 (which is also the root) and 1,
and transitions between both are possible. Then one possible program for the universal machine would be
to first output zero, and then to sequentially move the input bits to the output tape. This would be a very
short program, and the measure p that it generates is the random coin toss. Hence K (u; A) would be very
small, but the Kolmogorov complexity of the first m outputs would typically be about m, i.e. maximal.

So suppose that the event above indeed happenﬂ and P gets close to u for large n. Then observers
may say the following: “It seems that what happens is not completely deterministic, and sometimes pretty

9While there are many conceivable ways to do this, we should construct a test that is as simple as possible (in the sense of
description length/Kolmogorov complexity), since the convergence p(1/1™) — 1 will happen faster for simpler tests f.

1%Tn more formal detail, the difference between P(e|xT; A) and u(e|x}; A) converges to zero in Hellinger distance.

1T do not currently know whether convergence to some computable measure ;¢ must happen with probability one, i.e. whether
P{3p computable : P(y|zy,...,zn; A) =3 p(y|zi,...,20; A)} = 1. But even if this probability is strictly less than one, we
can still hope that some parts of the future observations y will asymptotically be governed by computable laws, or that we have
a weaker form of convergence in the sense that P converges to p on all computable statistical tests, or something like this.
The principle of persistent regularities motivates to consider the asymptotic emergence of computable regularities as a generic



complex... there seems to be intrinsic randomness in the world. However, this randomness seems to be
governed by simple probabilistic “laws of nature” that have a very short description. Wow, that’s interesting!”

However, these “laws of nature” p are of a quite unusual form in this formulation: they say how likely
certain observations are, not how likely certain events occur in the external world — there is not yet any
notion of “external world”. Yet, we do get an emergent notion of external world: as explained above,
K (p; A) being small means that there is a simple computational process that generates outputs distributed
according to p. This computational process has all the characteristics that we normally attribute to an
“external world”: it contains the observer (namely, the observations correspond to the outputs of the
process), it evolves in time according to simple computational laws (since it is an algorithm), and most of it
is not directly accessible to the observer. However, those parts of the computational process in addition to
the outputs (that is, those parts which are not directly observed — say, the working memory) are correlated
to future observations. Therefore, it makes sense for the observer to model and guess the state of these
additional elements. This is analogous to a human observer who tries to guess whether there could be a car
approaching from behind a curve before crossing a road: knowledge about that other car may currently be
unavailable, but that car’s state is correlated to her future experiences (namely, being hit by it or not).

Thus, the process that computes the measure p can be interpreted as the observer’s external world. But
this does not imply that observers see actual bits, tapes, or other functional aspects of popular models of
computation in their external world. The claim is only that there is an abstract probabilistic computational
process that generates the observations, and our “external world” is a useful representation of this process.
The mathematical framework on which our two postulates rely can be built on any kind of machine model.
While in [I] T have chosen to work with a generalization of the monotone Turing machine, any other model
that reads input bits and generates output histories sequentially will do equally well, and will define the exact
same class of algorithms and probability measures and thus the exact same theory. For example, we could
have built the framework on cellular automata, certain versions of A-calculus, quantum Turing machines, or
any other exotic machine model, as long as it can in principle be simulated (not necessarily efficiently) by a
generalized monotone Turing machine and vice versa. Since the resulting theory is insensitive to the choice
of model, the observer’s emergent external world cannot be expected to resemble properties of any specific
model of computation except for features that are common to all models of computatio

One such common feature is that computations must start in a simple initial state, and then complexity
and entropy unfold in a simple algorithmic temporal evolution. This is exactly what we see in our world:
extrapolating our universe’s state to the past suggests that it has once started in a state of low complexity
(“Big Bang”).

There is yet another important feature of physics that we have to reconstruct: so far, every observer
sees her private external world, and there is no apriori relation between the worlds of, say, observers A and
B. For concreteness, suppose that observer A (“Abby”) sees an external world in which events happen with
probability v (formally, v is the probability distribution over the histories of the computational process as
described above). For example, suppose that the probability that the sun is going to rise tomorrow in Abby’s
world is v &= 1. But now suppose that Abby sees another observer, Bambi, in her world — some bunch of
stuff that looks as if it encoded some mental states that describe the history of an observer according to our
abstract definition. If Abby could somehow directly access Bambi’s brain, she would find that Bambi has
made a sequence of observations x = (z1, ..., %, ) in Abby’s world in the past. Abby could watch Bambi for
a while, and see that Bambi makes some new observations (z1, ..., 2;). What is the probability that Bambi’s
next observation will be y? Well, according to Abby, it is v(y|x, z1, ..., 2x). For example, the probability
that Abby will see Bambi seeing the sun rise tomorrow will be close to one.

But according to our theory, there is another, apriori completely unrelated first-person probability as-

phenomenon. Thus, assuming that the convergence as in Theorem is happening will hopefully give us insights that remain
valid even if this assumption does not necessarily turn out to be satisfied exactly with unit probability.

1211 more detail, these would be features that are common to all models of computation which are useful for observers that
are part of the computation; see also the relevance of “predictivity” in Subsection



sociated with these experiences: namely, algorithmic probability P(y|x, z1,...,2;; B). This is the actual
chance of Bambi having next experience y. In principle, both probabilities have nothing to do with each
other — it could be that Bambi will in fact see the sun rise tomorrow with probability much less than one
(P < 1), even though Abby sees Bambi seeing the sun rise with probability close to one (v =~ 1)! If this
was the case, then Bambi would be a “probabilistic zombie” for Abby (adopting a vaguely related notion
as introduced by Wittgenstein) — it would be an extremely counterintuitive situation in which Abby and
Bambi would somehow not be “real” with respect to each other (take care that this is a quite colorful but
highly problematic handwaving description). Good news: this does not typically happen.

Theorem 2.3 (Emergence of objective reality). The probabilities v that determine the fate of Bambi (B)
as seen by Abby are asymptotically close to the probabilities P which correspond to the actual propensities
of Bambi’s observations. That is, with v-probability one,
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This is true under some assumptions [1, Assumption 10.1] which basically say that Bambi’s experiences are
well-defined in Abby’s world for an arbitrarily long time in the future (i.e. Bambi is not terminated).

Thus, different observers will, after seeing each other for long enough, have compat